Title Introduction to Physics Laboratory (Wprow do I prac. fiz.)	Code 1010401211010430684
Field TECHNICAL PHYSICS	Year / Semester
Specialty	Course
-	core
Hours	Number of credits
Lectures: 1 Classes: - Laboratory: - Projects / seminars: -	2
	Language
	polish

Lecturer:

dr Krzysztof Łapsa	
Katedra Spektroskopii Opty	cznej
Poznań, ul. Nieszawska 13/	4
tel. 61 6653164	
Krzysztof.Lapsa@put.pozna	an.pl

Faculty:

Faculty of Technical Physics ul. Nieszawska 13A 60-965 Poznań tel. (061) 665-3160, fax. (061) 665-3201 e-mail: office_dtpf@put.poznan.pl

Status of the course in the study program:

Core course of the study for Technical Physics, Faculty of Technical Physics.

Assumptions and objectives of the course:

Introduction to carrying out laboratory experiments and processing experimental data.

Contents of the course (course description):

Operation of common laboratory instruments (rules of operating, certainty of instrument). Classification of uncertainties. Basic definitions of uncertainties theory (Gauss distribution function, average value, standard deviation, Student-Fisher method for small series of events). Evaluating uncertainties of the complex quantities by complete differential method. Rounding results und uncertainties. Rules of making graphs. Linear regression method.

Introductory courses and the required pre-knowledge:

Secondary school mathematics and physics.

Courses form and teaching methods:

Lectures.

Form and terms of complete the course - requirements and assessment methods: Written test.

Basic Bibliography:

Additional Bibliography: